Firms adaptation in dynamic economic systems

Lilia Rejeb¹, Zahia Guessoum^{1,2}

¹MODECO-CRESTIC, University of Reims ²LIP6, University of Paris 6

Outline

Introduction Economic model XCS Adaptive firms Experiments Conclusion

Introduction

Economic systems are very complex:

- open
- large scale
- strong competition

Well known problem: relationship between firms adaptation and their dynamic environment

Adaptive multi-agent system

Our Solution: Adaptive MAS

 Firms adapt to the varying environment characterized by the other firms (micro level) and also by the organizational forms (macro level)

Economic model (1)

Each firm is defined by:

- resources X which may be physical (equipment, grounds, raw materials...) or human (administrative staff, technical...),
- capital K,
- budget B,
- performances Y,
- strategies,

Firm's decision process

 select the most suited strategy in a given context: internal parameters, perception of the other firms, perception of the organizational forms.

It's not easy to define the decision rules

Economic model (2)

Adaptation is needed to:

- use previous experience to disambiguate the environment state
- anticipate the consequences of a strategy before using it
- evaluate the strategies after their use

⇒ Endow firms with a learning capacity

XCS: Learning Classifier System (Wilson 1995)

- Classifiers
 - condition
 - action
 - prediction (p), Error (e), Fitness (f)
- Genetic algorithm
 - update the classifiers population
- Reinforcement learning (Q-Learning)
 - evaluate the classifiers
- Generalization
 - reduce the number of classifiers

Adaptive firms (1)

Adaptive firms (2)

The use of reinforcement learning (XCS) to implement the decision process of firms allow to:

- construct dynamically and automatically the decision rules
- anticipate the strategies consequences
- evaluate these strategies

However: give rise to some problems such as: coding delimitation of the nature and level of the reward function exploration-exploitation dilemma

Adaptive firms (3)

Coding:

- Classifier condition
 - diversity of the firm context parameters and their type (real, fuzzy)
 - important number of parameters
 - A unification method to homogenize the parameters is needed
 - decomposition of the definition domain of each attribute in n intervals
 - representation of each attribute by a fuzzy value.
 - representation of the fuzzy value by a binary string of n bits

Classifier's action = Firm's strategy

Adaptive firms (4)

Firm classifier	Classifier in XCS
K is small	0001
B is medium	0010
$X = \{x_1 \text{ is very small, } x_2 \text{ is small,} \}$	0000, 0001,
x_3 is medium, x_4 is very small,	0010, 0000,
x_5 is very small, x_6 is very small,	0000, 0000,
x_7 is very small, x_8 is very small}	0000, 0000,
$Y = \{ y_1 \text{ is small}, y_2 \text{ is small} \}$	0001, 0001,
Average_K is large	0011
Average_B is very large	0111
NbFirms is very small	0000
Average_Y = Aver_ y_1 is medium, Aver_ y_2 is small}	0010, 0001
Form = Form1	0000, 0001,0010, 0000,
	0000, 0000,0000, 0000,
$Best_Form = Form2$	0010, 0011,0110, 0100,
	0000, 0001,0000, 0000,
Worst_form = Form6	0001, 0001,0100, 0000,
	0001, 0000,0000, 0000,
Action =Strategy 1	1
	(p)=0.5, (e) = 0.01, (F) = 100

Adaptive firms (5)

The reward function: – Usually discrete

In the firm context a great improvement of the performances is different from small one

A reward function varying with the context.

 Is it profitable to consider the other firms in the definition of the reward function ? (Peres- Uribe 04)

Adaptive firms (6)

Individual reward function

$$reward = aggreg\left(\frac{Y_{t}[1] - Y_{t-1}[1]}{Y_{t}[1]}, \frac{Y_{t}[2] - Y_{t-1}[2]}{Y_{t}[2]}\right)$$

Collective reward function
 variation of the relative performance of the firm

 $reward = relative _ perf_t - relative _ perf_{t-1}$

where Relative_performance_t considers the past performances of the firm and the competition state.

Experimentation protocol

Fixed XCS parameters

- Population size = 6000
- Exploration probability = 0.5
- Activation of the genetic algorithm each 20 periods
- Learning rate = 0.001

Results correspond to the average values of 20 simulations

 Populations of 300 firms having the same initial parameters and differing by their decision process

Rule-based vs. adaptive firms

Adaptive firms have a greater capital
Adaptive firms have a first difficult phase -> empty initial base

Greater resistance of adaptive firms

Easier learning with less precise coding and richer classifiers population with more precise coding

The convergence when using 16 intervals is at ~ 9000
 The convergence when using 8 intervals is at ~ 5000

Greater resistance with more precise codification

Considering the other firms only in the perception is sufficient to make good decisions

The average improvement given by collective reward is of 1%

Conclusion

- An adaptive multi-agent model Firms adapt according to:
 - their perception of the other firms (micro level)
 - their perception of the organizational forms (macro level)

An operational simulator

- simulate complex models
- highlight the advantages and problems of using XCS in dynamic multiagent environments

Several interesting open problems

- Coding
- The exploration-exploitation dilemma
- Influence of the organizational forms on the associated firms